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A family of dynamic low-dispersive finite difference schemes for large-eddy simulation is
developed. The dynamic schemes are constructed by combining Taylor series expansions
on two different grid resolutions. The schemes are optimized dynamically during the sim-
ulation according to the flow physics and dispersion errors are minimized through the real-
time adaption of the dynamic coefficient. In case of DNS-resolution, the dynamic schemes
reduce to the standard Taylor-based finite difference schemes with formal asymptotic
order of accuracy. When going to LES-resolution, the schemes seamlessly adapt to disper-
sion-relation preserving schemes. The schemes are tested for large-eddy simulation of Bur-
gers’ equation and numerical errors are investigated as well as their interaction with the
subgrid model. Very good results are obtained.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the past decades, the necessity for numerical quality in direct numerical simulations (DNS) and large-eddy simulations
(LES) of turbulent flows, has been recognized by many researchers, e.g. [1–3]. In a very well resolved direct numerical sim-
ulation, the smallest resolved scales are located far into the dissipation range. Since these scales have only a very small en-
ergy-content in comparison with the largest resolved scales in the flow, they are often considered to have a negligible
influence on the mean flow statistics. In a large-eddy simulation, however, where only the most important large scale struc-
tures are resolved, the smallest resolved scales are part of the inertial subrange such that they contain relatively more energy
than those in the dissipation range. Hence, the smallest resolved scales in large-eddy simulation are not negligible and have a
significant influence on the evolution of the LES-flow. The accuracy with which these small scales are described is therefore
expected to be important. Moreover, some advanced subgrid modeling techniques such as the dynamic procedure or mul-
tiscale modeling strongly rely on the smallest resolved scales in LES. Hence, accurate resolution of the small scales should
result in correct application of these subgrid models. Good numerical quality for an affordable LES is thus vital for accurate
flow prediction as it directly influences resolved physics as well as subgrid modeling.

Aside from aliasing errors, which should be prevented by eliminating scales beyond jc ¼ 2=3jmax [4], discretization errors
are mainly responsible for the loss of numerical accuracy. In order to reduce the computational costs, it is highly desirable in
LES to maximize the ratio between the physical resolution and the grid resolution jc=jmax. Standard second-order central
schemes may not be sufficient for accurate LES, since numerical errors can become dominant for large jc=jmax. Ghosal [1]
and Chow and Moin [3] recommend a filter-to-grid cutoff-ratio jc=jmax 6 1=4 when using a second-order central scheme,
to ensure that the magnitudes of the discretization errors remain smaller than the magnitude of the modeled force of the
subgrid scales. However, in contrast to Ghosal [1] and Chow and Moin [3], Park and Mahesh [5] found in the Eddy-Damped
Quasi-Normal Markovian LES or EDQNM-LES of isotropic turbulence at low Reynolds number, that for a second-order
. All rights reserved.
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scheme, the subgrid force remains dominant. Indeed, for low Reynolds numbers, the finite difference approximation of the
subgrid force is relatively more important than for high Reynolds numbers [6], leading to somewhat different results and
conclusions. Nevertheless, for high Reynolds numbers, the numerical error of the nonlinear term is dominant and can be lar-
ger than the subgrid force as shown by Berland et al. [6] using EDQNM theory. Moreover, since accurate resolution of the
smallest scales (characterized by jc) increases the required number of nodes with a factor ð2jmax=3jcÞ3 than theoretically
necessary, such small values of jc=jmax are prohibitively expensive for most 3D LES computations. Higher-order discretiza-
tions are often applied to allow for larger filter-to-grid cutoff-ratios. However, in order to obtain acceptable dispersion errors
up to jc ¼ 2=3jmax, which is the maximum resolution on the computational grid, at least the standard 10th-order central
scheme or a sixth-order compact Padé scheme are required, which again inevitably leads to increased complexity and/or
computational costs.

It is common practice in computational fluid dynamics to use (high-order) central schemes based on a truncated Taylor
series, leading to a certain formal asymptotic order of accuracy for the largest scales. Although this may be sufficient for fully
resolved direct numerical simulations, it is not necessarily the optimal strategy for large-eddy simulation. Preserving the glo-
bal dispersion relation for the full range of scales up to jc ¼ 2=3jmax instead of focusing on asymptotic order of convergence,
could be much more advantageous in large-eddy simulations. In other words, it may be desirable for LES to have optimized
finite difference approximations of the derivatives with similar Fourier characteristics as the analytical derivatives. This
point of view was introduced by Tam and Webb [7] in the field of computational aeroacoustics, where accurate simulation
of propagating waves require highly non-dispersive and non-dissipative finite difference schemes. Kim and Lee [8], Hixon
[9], Ashcroft and Zhang [10], Bogey and Bailly [11] and Berland et al. [6] performed further investigations on this topic. These
low-dispersive prefactored finite difference schemes are constructed by static minimization of the dispersion errors in Fou-
rier space in the range 0 6 jc=jmax 6 0:9, assuming a uniform spectrum distribution.

In the present work, we develop a family of dynamic low-dispersive finite difference schemes for large-eddy simulation.
The schemes, inspired by the work of Winckelmans et al. [12,13], Debliquy et al. [14] and Knaepen et al. [15], are constructed
by combining Taylor expansions on two different grid resolutions, similar to Richardson Extrapolation. A first attempt of this
technique has proven successful for obtaining higher accuracy in laminar flows in Fauconnier et al. [16,17]. Here, we try to
refine the technique for large-eddy simulation, and show the agreements with the work of Tam and Webb [7] and Kim and
Lee [8]. However, in contrast to their work, the constructed schemes are optimized dynamically during the simulation
according to the instantaneous properties of the flow and dispersion errors are minimized through the real-time adaption
of a dynamic coefficient. In case of DNS-resolution, i.e. for sufficiently smooth and regular physics on the grid, the dynamic
schemes reduce to the standard Taylor-based finite difference schemes with formal asymptotic order of accuracy. When
going to LES-resolution, the schemes seamlessly adapt to optimized schemes. This could be particularly interesting for tran-
sient developing flows, or in case of grid refinement studies with fixed filter width.

The outline of this paper is as follows: after a short description of the mathematical formalism of discretization, the dy-
namic finite difference approximations are constructed by combining Taylor series expansions on two different grid resolu-
tions. The accuracy of the constructed schemes is analyzed in Fourier space using modified wavenumbers. Since one variant
of these schemes is nonlinear, a multiple-wave Fourier analysis of the transfer function is done [16]. The relation of the dy-
namic schemes with the dispersion-relation preserving (DRP) scheme of Tam and Webb [7] and the dispersion-relation pre-
serving compact Padé scheme of Kim and Lee [8] is then demonstrated. The remaining parameter in the dynamic schemes is
then optimized, using a model for the expected energy spectrum. The effect of the specific choice of the spectrum on this
parameter is discussed. Before presenting the results obtained from the large-eddy simulation of the one-dimensional vis-
cous Burgers’ equation, the numerical setup and the definitions for error evaluation of the finite difference schemes are
briefly explained. The current LES-approach on the Burgers’ equation is different from previous studies of dispersion-relation
preserving schemes in which either linear wave propagation problems [8,10,18], or simulations of inviscid Burgers’ or Euler
equations without dealiasing nor subgrid dissipation [9] were studied. In this work, dealiasing is implemented as proposed
by Orszag [4] in order to exclude aliasing errors from the solution. An error decomposition is defined as an attempt to sep-
arate the finite difference errors from modeling errors [19,20]. Moreover, the influence on the dynamic Smagorinsky-like
model is investigated. Finally the conclusions are presented. To the authors’ knowledge only Berland et al. [6] have per-
formed an error quantification of prefactored dispersion-relation preserving schemes using EDQNM-closed large-eddy sim-
ulation of isotropic turbulence. The present work might be a first attempt for a systematical study on the topic of general
dispersion-relation preserving schemes for LES in physical space.

2. Mathematical formalism

Assume a vector field~uð~x; tÞ defined in continuum space Rq, q 2 f1;2;3g. To avoid an overload in notation, we restrict our-
selves in this work to one spatial dimension q ¼ 1, without loss of generality and we do not write explicitly the dimension in
time, such that uðx; tÞ ¼ uðxÞ 2 R. Consider now the definition of the continuum nth-order spatial derivative of this field,
onu
oxn
¼ limd!�

dnu
ðdxÞn

; ð1Þ
with �! 0 an infinitesimal interval. Since this definition cannot be satisfied in discrete space, where inevitably � > 0, the
derivative can only have a discrete approximation constructed from a Taylor series expansion to a certain order of accuracy
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k. Using the notation �u for the discrete field and d for the discrete difference operator, Taylor series expansion for the deriv-
ative reads
onu
oxn
¼ dn�u

dxn
þ ck;nDxko

nþku
oxnþk

þOðDxkþ2Þ; ð2Þ
in which the finite difference approximation in a node x ¼ xj is
dn�u
dxn
¼ 1

Dxn

Xjþr

m¼j�r

bm�uðxjÞ; ð3Þ
r being the number of neighboring grid points used in the approximation and bm a set of weighting coefficients. Since DNS
and LES are very sensitive to numerical dissipation, which can excessively damp small scales, only central schemes will be
considered, having a symmetric set of coefficients bm. Although these central schemes are non-dissipative, they can induce
dispersion errors, affecting the phase speed of the separate wave components and redistributing energy. For regular fields,
which are sufficiently smooth on the computational grid, the Taylor series converges rapidly due to small contributions of
the higher derivatives. Hence, the dispersion errors remain low. However, in case of highly fluctuating fields with marginal
resolution on the grid, the contributions of the higher derivatives in the truncation terms of the Taylor series become much
more important, slowing down the convergence of the Taylor series and thus leading to significant dispersion errors. Stan-
dard Taylor-based asymptotic finite difference approximations assume smooth fields and fast convergence of the Taylor ser-
ies. However, in case of irregular LES-fields, where the Taylor series converges more slowly, it would be much more
advantageous to minimize contributions of all terms in the Taylor series to obtain good overall performance. In the next par-
agraph, we construct highly accurate central schemes with minimized dispersion errors, by comparing Taylor series on two
different grid resolutions. We therefore extend the previous mathematical formulation to multi-resolution formulation.

We define two grid resolutions with grid spacings D and 2D. The exact Taylor series expansions for the nth-order deriv-
ative, n ¼ 0;1;2; . . ., for a kth-order central discretization scheme (k ¼ 2;4;6; . . .) on the two grid resolutions are given by
onu
oxn
ðxÞ ¼ dn�u

dxn

����D þ ck;nD
ko

kþnu
oxkþn

þOðDkþ2Þ; ð4Þ

onu
oxn
ðxÞ ¼ dn�u

dxn

����2D

þ ck;nð2DÞko
kþnu

oxkþn
þOðDkþ2Þ; ð5Þ
in which the coefficient ck;n is known a priori from Taylor series expansion. In the following, we denote this theoretical Taylor
value as c�k;n. Two common techniques exist now to obtain higher-order approximations. One can either find a finite differ-
ence approximation for the leading order truncation terms, or eliminate the coefficient ck;n by combining expressions (4) and
(5), truncated to order OðDkþ2Þ. The latter technique, known as Richardson extrapolation, has no clear advantage over the
first one, since both lead to a finite difference approximation of formal order of accuracy OðDkþ2Þ. However, we show in this
work that the combination of both techniques can lead to a non-trivial self-adaptive dynamic scheme with basic order of
accuracy OðDkÞ, but with better spectral characteristics.
3. Construction of the dynamic finite difference schemes

Suppose the leading order truncation terms in Taylor series (4) and (5) are discretized on both grid resolutions with a
minimal order OðD2Þ. Then it would be possible to obtain a value of ck;n by combining both expressions. The new ck;n will
not necessarily have the same value as the one obtained from the Taylor series, as it is a function of uðxÞ and its derivatives.
Moreover, we expect the value of ck;n to be optimized with respect to uðxÞ, such that deficiencies of the finite difference
approximation, e.g. dispersion errors are minimized.

We proceed by writing the truncated Taylor series with the discretized leading order truncation term and we introduce a
blending factor f in the second equation
onu
oxn
ðxÞ ¼ dn�u

dxn

����D þ ck;nD
kd

kþn�u
dxkþn

�����
D

þOðDkÞ; ð6Þ

onu
oxn
ðxÞ ¼ dn�u

dxn

����2D

þ ck;nð2DÞk f
dkþn�u
dxkþn

�����
2D

þ ð1� f Þd
kþn�u

dxkþn

�����
D

8<:
9=;þOðð2DÞkÞ: ð7Þ
Remark that, unless ck;n has the exact Taylor value, the order of accuracy in both expressions remains OðDkÞ. The difference
between the fine grid and coarse grid discretization is obtained by subtracting (7) from (6) giving
E ¼ Lþ ck;nM ¼ Oðð2DÞkÞ �OðDkÞ; ð8Þ
in which the Leonard terms L and the Model terms M read
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L ¼ dn�u
dxn

����D � dn�u
dxn

����2D

; ð9Þ

M ¼ ð1� 2kÞDkd
kþn�u

dxkþn

�����
D

� 2kDkf
dkþn�u
dxkþn

�����
2D

� dkþn�u
dxkþn

�����
D

0@ 1A: ð10Þ
The magnitude of the difference (8), which is a function of the parameter ck;n, provides an indication about the accuracy with
which the finite difference scheme on the fine grid resolution approximates the analytical derivative. If the difference is
small, the resolution is sufficiently fine and ensures an accurate finite difference approximation on the fine grid. In contrast,
a large difference E indicates that the resolution is not fine enough to guarantee a good accuracy of the finite difference
approximation on the fine grid. However, an optimal coefficient ck;n can be found such that the difference E is minimal. Then,
the finite difference approximation on the fine grid must have an optimal accuracy (low dispersion error), which differs only
minimally with the accuracy of the coarse grid approximation. To explain the purpose of the blending factor f 2 ½0;1� we
illustrate the cases f ¼ 0 and f –0.

3.1. Asymptotic high-order schemes for f ¼ 0

If the blending factor f ¼ 0, then the coefficient ck;n can be obtained from expression (8) by imposing the difference E ¼ 0,
leading to
dn�u
dxn

����D � dn�u
dxn

����2D

¼ ck;nð2k � 1ÞDkd
kþn�u

dxkþn

�����
D

: ð11Þ
Although the left-hand-side discretization does not necessarily lead to a finite difference approximation of dkþn�u=dxkþnjD with
minimal stencil width, we consider in this work dkþn�u=dxkþnjD be discretized with minimal stencil width. Substitution of (11)
into (6), eliminating ck;n leads to the finite difference approximation of order OðDkþ2Þ.
onu
oxn
ðxÞ ¼

2kdn �u
dxn

��D � dn �u
dxn

��2D

2k � 1
þOðDkþ2Þ; ð12Þ
which is Richardson’s Extrapolation formula. Expression (12) is thus again an approximation with formal asymptotic order of
accuracy OðDkþ2Þ. Since the aim is to construct optimized finite difference schemes with good Fourier characteristics, aban-
doning the concept of formal asymptotic order of accuracy, we investigate the case where f is different from zero.

3.2. Optimized schemes for f – 0

For the case f – 0, we proceed in a somewhat different manner than for f ¼ 0. Imposing E ¼ 0 and eliminating ck;n

straightforwardly from expression (8), would lead to a substitution of ck;n with a nonlinear expression. The resulting field
for ck;n would be pointwise varying in space, in contrast to the constant value obtained from the Taylor series. Here, we fol-
low a more general approach instead by extracting ck;n from a least squares optimization, in which the least squares aver-
aging domain is an additional degree of freedom. This allows us to regulate the smoothness of the obtained coefficient.
We proceed by subtracting (7) from (6). First, expressions (9) and (10) can be simplified by writing them on a single grid
resolution using relation (11)
L ¼ c�k;nð2
k � 1ÞDkd

kþn�u
dxkþn

�����
D

; ð13Þ

M ¼ ð1� 2kÞDkd
kþn�u

dxkþn

�����
D

� 2kDkf c��k;nð1� 22ÞD2d
kþnþ2�u

dxkþnþ2

�����
D

0@ 1A; ð14Þ
with c�k;n and c��k;n constant coefficients known from Taylor series expansion. Note that c�k;n and c��k;n differ for different deriv-
atives. The optimized coefficient can be extracted by least squares minimization of the difference E, i.e.
o

ock;n
E2� �
¼ 0; ð15Þ
where h�i denotes an averaging operator (to be defined later), resulting finally in the dynamic coefficient
cdyn
k;n ¼ �

LMh i
MMh i : ð16Þ
Once cdyn
k;n is calculated, its value can be used in the expression
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onu
oxn
ðxÞ ¼ dn�u

dxn

����D þ cdyn
k;n Dkd

kþn�u
dxkþn

�����
D

þOðDkÞ: ð17Þ
The resulting dynamic scheme has a formal order of accuracy OðDkÞ unless cdyn
k;n equals the Taylor value which then leads to

formal order of accuracy OðDkþ2Þ. Although the order of accuracy is not necessarily increased by this dynamic procedure, the
scheme can have better Fourier characteristics. This will be shown in next paragraph.

In this work, only two averaging operations are considered, i.e. a global uniform averaging over the entire domain, and a
local averaging over half the grid spacing D=2. Clearly it is possible to perform local averaging over multiple grid spacings,
but this case will not be considered in the present work. Applying the global uniform averaging operator to expression (16)
results into the following spatially constant coefficient
cdyn
k;n ¼ c�k;n

dkþn�u
dxkþn

2

� 2kð1� 22Þ
1� 2k

fc��k;nD
2 dkþnþ2�u
dxkþnþ2

dkþn�u
dxkþn

" #* +
dkþn�u
dxkþn

� 2kð1� 22Þ
1� 2k

fc��k;nD
2 dkþnþ2�u
dxkþnþ2

" #2* + ; ð18Þ
substitution of which will lead to the so-called linear dynamic finite difference approximation. On the other hand, application
of the local averaging operation to expression (16), results into a pointwise varying dynamic coefficient, determined as
cdyn
k;n ¼ �

L

M
¼

c�k;n

1� 2kð1� 22Þ
1� 2k

D2fc��k;n

dkþnþ2 �u
dxkþnþ2

���D
dkþn �u
dxkþn

���D
: ð19Þ
Substitution of this coefficient into equation (17) leads to the nonlinear dynamic finite difference approximation.
Contrary to the global averaged coefficient, the local averaged coefficient is not grid independent on both grid resolutions

considered, violating to some extent the mathematical foundations of the multi-resolution concept. Substitution of this coef-
ficient into the fine resolution Taylor series will lead to the nonlinear dynamic finite difference approximation. Appendix A
gives an overview of the higher-order derivatives in the expressions of the first and second-order dynamic approximations.
In contrast to the linear dynamic scheme, the nonlinear variant is not conservative a priori, since it cannot be written
straightforwardly in the divergence formulation. In Appendix B we discuss the conservative formulation of this scheme,
which will be used in the further numerical study.
4. Fourier analysis

For further examination of the dynamic scheme (17) and its dynamic coefficient (16), we proceed with a Fourier analysis
on the optimized finite difference approximation of the nth-order derivative. Such a Fourier analysis should allow us to bet-
ter understand the quality of the constructed schemes. Remark that in case of the nonlinear dynamic finite difference approx-
imation with coefficient (19) the Fourier analysis will only be valid for a single wave component and cannot be extrapolated
straightforwardly to a composed wave, since superposition is not applicable to nonlinear expressions. Therefore, we perform
a multiple-wave-analysis later on. In Fourier space, the nth finite difference derivative can be written as
F
dn�u
dxn

� �
¼ ij0n
� �n

F �uð Þ; ð20Þ
with j0n its modified wavenumber. The modified wavenumber of a scheme can be obtained by substitution of the discrete
wave �uðxjþrÞ ¼ eijðxjþrDÞ into the finite difference approximations and represents the error of the discrete derivatives for a sin-
gle wave with wavenumber ratio j=jmax. The real part of the modified wavenumber j0n represents dispersion errors, while
the imaginary part represent dissipation errors. We remind that the latter are absent in central schemes. The modified wave-
number of the dynamic finite difference approximation of the nth derivative is given by
j0nn;dyn ¼ j0n
� �n þ cdyn

k;n Dk j0nþk

� �nþk
; ð21Þ
in which cdyn
k;n is determined dynamically. Appendix C gives an overview of the modified wavenumber for several finite dif-

ference approximations. Obviously, the approximation of order OðDkþ2Þ is recovered if cdyn
k;n equals the theoretical value ob-

tained from Taylor expansion. However, since cdyn
k;n is calculated by expression (16), this will generally not be the case, and the

value of the coefficient cdyn
k;n will depend mainly on the instantaneous properties of the field, its derivatives and the value of f.

This implies that the spectral behavior of cdyn
k;n will be crucial for the behavior of the modified wavenumber (21), and further

analysis is inevitable.



D. Fauconnier et al. / Journal of Computational Physics 228 (2009) 1830–1861 1835
4.1. The linear dynamic finite difference approximation

Since the physics of the field are reflected by the energy spectrum, an attempt is made of analyzing the behavior of the
dynamic coefficient by transforming the error definition into Fourier space. Using �̂, to denote the Fourier transform, the error
(8) is given in Fourier space by
bEðjÞ ¼ bL þ ck;n

cM; ð22Þ
with ck;n the constant dynamic coefficient and
bLðjÞ ¼ c�k;nð2
k � 1ÞDk ij0kþn

� �kþnû; ð23ÞcMðjÞ ¼ ð1� 2kÞDk ij0kþn

� �kþnû� 2kð1� 22ÞDkþ2fc��k;n ij0kþnþ2

� �kþnþ2û; ð24Þ
corresponding to Eqs. (13) and (14). We can further define the error spectrum (̂�� denotes the complex conjugate)
EbE ðjÞ ¼ bE bE � ¼ bL bL� þ ck;n
cM bL� þ ck;n

cM� bL þ c2
k;n
cMcM�: ð25Þ
Since the basic order of accuracy k is even for central schemes, it can be verified that in that case cM bL� ¼ cM� bL and thus
EbE ðjÞ ¼ bE bE � ¼ bL bL� þ 2ck;n
cM bL� þ c2

k;n
cMcM�: ð26Þ
The optimal value for the coefficient ck;n can now be found by a least squares approximation in Fourier space, defined as
o

ock;n

Z p
D

0
EbE ðjÞdj ¼ 0: ð27Þ
Working out this integral expression leads to following expression for cdyn
k;n" #
cdyn
k;n

c�k;n
¼

Z p
D

0
j0kþn

� �kþn j0kþn

� �kþn þ 2kð1� 22Þ
1� 2k

D2fc��k;n j0kþnþ2

� �kþnþ2 ûû� dj

Z p
D

0
j0kþn

� �kþn þ 2kð1� 22Þ
1� 2k

D2fc��k;n j0kþnþ2

� �kþnþ2

" #2

ûû� dj

; ð28Þ
in which the product ûû� represents the energy spectrum EuðjÞ of the field uðxÞ. Once the shape of the energy spectrum of the
field is known or a model spectrum is assumed and a value of the blending factor f is predefined, it is possible to calculate the
dynamic coefficient for that spectrum from the integral expression (28). Note that the optimal value of the blending factor f
will be specified later in this work. First, we assume a uniform Heaviside-like spectrum shape
EuðjÞ ¼ 1� Hðj� jcÞ ¼
1; j < jc;

0; j > jc;

	
ð29Þ
in which the cutoff wavenumber jc indicates the highest appearing wavenumber in the field u(x). Although this theoretical
spectrum has no direct relation to real turbulence, it is selected in this work to examine analytically the potential of the con-
structed dynamic schemes. Moreover, the uniform spectrum will be used in this work for the optimization of the dispersion-
relation preserving schemes, in accordance with the work of e.g. Tam and Webb [7]. The influence of assuming the real energy
spectrum (28) will be demonstrated in Section 5. The simple uniform spectrum makes the expression analytically integrable,
and the resulting equation describes a surface of the coefficient as function ofjc and f. This surface is represented as a parametric
plot in Fig. 1. For f ¼ 0 the Taylor value c�k;n is recovered, regardless of the spectral content of the field expressed by the ratio
jc=jmax. More important, for smooth signals with low ratios of jc=jmax, the coefficient also converges to the Taylor value c�k;n.
This means that the scheme recovers OðDkþ2Þ for very smooth signals. In case of f – 0, different profiles for cdyn

k;n as function of
the filter-to-grid cutoff-ratio jc=jmax appear. The performance is illustrated in the modified wavenumber plots of Fig. 2, where
the spectral content of the field is assumed to be jc=jmax ¼ 2=3. Clearly, the linear dynamic finite difference approximation acts
as an optimizable kth-order finite difference scheme, in which cdyn

k;n is obtained dynamically (for a certain f), according to the
spectral content of the flow field, indicated by jc. As can be seen from the figures, different values of f lead to different behavior
of the dynamic scheme and different accuracy. It is clear that if the ratio 0 6 cdyn

k;n =c�k;n < 1, the scheme’s Fourier characteristic will
lie between that of the kth-order and ðkþ 2Þnd-order standard scheme, and does not result into the desired behavior. Moreover,
if cdyn

k;n =c�k;n < 0, i.e. ck;n has an opposite sign in comparison with its Taylor value c�k;n, poor Fourier characteristics areobserved that
lie below that of the kth-order scheme. Hence, the f-values should be chosen such that cdyn

k;n =c�k;n P 1 for all values of the wave-
number ratio jc=jmax. Since cdyn

k;n acts like a sensor for the wave number content in the field uðxÞ, it should be a monotonic func-
tion of the filter-to-grid cutoff-ratio jc=jmax such that each value of cdyn

k;n corresponds to a unique value of jc=jmax. Both
conditions are mathematically expressed by
cdyn
k;n

c�k;n
P 1; ð30Þ

1
c�k;n

ocdyn
k;n

oj
P 0 8j; ð31Þ
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Fig. 1. Linear dynamic scheme: parametric plot of the dynamic coefficients cdyn
n as function of cutoff wavenumber jc and the blending factor f. Upper k ¼ 2,

lower k ¼ 4. Left n ¼ 1, right n ¼ 2.
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and bound the value of f to a certain interval in which an optimal value most likely can be found. This optimal value of f will
be determined in Section 5.

4.2. The nonlinear dynamic finite difference approximation

For this variant, the coefficient cdyn
k;n of the nonlinear dynamic finite difference scheme is locally averaged over half the grid

spacing D=2 such that it reduces de facto to a pointwise varying coefficient. Although the modified wavenumber for the non-
linear dynamic finite difference scheme can be determined, it will only be representative for a field uðxÞ containing a single
wave component, and is not necessarily representative for more general fields. Therefore, for general fields a multiple-wave-
analysis will be performed using the transfer function. After some mathematical manipulations the single-wave Fourier
expression of the resulting nonlinear dynamic coefficient (19) is found to be
cdyn
k;n ¼

c�k;n

1� 2kð1�22Þ
1�2k fc��k;n2 cosðjDÞ � 1ð Þ

: ð32Þ
The ratio of the higher derivatives dkþnþ2�u=dxkþnþ2=dkþn�u=dxkþn is thus represented in Fourier space by 2ðcosðjDÞ � 1Þ, regard-
less of the values of n and k. Since this function is bounded in the interval ½�3;0� for j 2 ½0;2p=3D�, we impose the same
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bounds on this ratio in physical space for practical computations. This way, singularities and false values are avoided. Notice
that the energy spectrum does not influence the resulting cdyn

k;n , and that the value of cdyn
k;n depends only on the wavenumber j

and not on jc. Substitution of cdyn
k;n into Eq. (21) leads to a rational expression for the resulting modified wavenumber, in

which the denominator is of the form 1þ 2b cosðjDÞ, with b a weighting coefficient. Without going into the mathematical
details, we mention that it is possible to rewrite the modified wavenumber of the nonlinear dynamic scheme in the charac-
teristic form of a tridiagonal compact Padé scheme, in which the Padé coefficients are dependent on c�k;n, c��k;n and f. This hints
to the fact that the nonlinear dynamic finite difference approximation is an explicit formulation of the tridiagonal compact
scheme. When applying conditions (30) and (31) to cdyn

k;n , it is easy to verify that the coefficient cdyn
k;n remains strictly negative

and monotonic in the Fourier domain 0! jmax, if
0 6 f <
1� 2k

2k�2ð1� 22Þc��k;n
: ð33Þ
The behavior of the dynamic coefficient, taking this limitation into account, is illustrated in Fig. 3. The coefficient cdyn
k;n is in-

deed monotonically decreasing with the wavenumber j, for all the shown values of f, and displays similar behavior to that of
the linear dynamic scheme. The modified wavenumber is shown in Fig. 4. It can be observed from this single-wave-analysis
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that the nonlinear dynamic finite difference approximation of the derivatives can lead to highly accurate schemes, outper-
forming the asymptotic explicit schemes, the linear dynamic scheme and even the standard 6th-order tridiagonal Padé
scheme for well chosen values of f. This is not surprising since we argued that the modified wave number of the nonlinear
scheme is equivalent to that of the tridiagonal compact Padé scheme with coefficients dependent on f. Moreover, by impos-
ing the standard constraints to obtain formal order of accuracy [21], it can be proven that for f ¼ 1=5 the modified wave
number reduces to that of the Padé approximant.

Although these results seem excellent, the former analysis is only valid for single-wave fields. For a more general analysis,
transformation of the resulting nonlinear dynamic scheme from physical space to Fourier space would lead to complicated
convolution integrals. In order to avoid this, we investigate the scheme’s response to a multiple-wave field in a semi-ana-
lytical way by looking at the transfer function. Assume the multiple-wave field
Fig. 3.
k ¼ 2. L

Fig. 4.
central
uðj; xÞ ¼
XM

j¼1

eðijjxÞ; ð34Þ
0 0.2 0.4 0.6 0.8 1

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

f = 0
f = 0.05
f = 0.1

f = 0.15

f = 0.2

f = 0.25

κ/κmax

c 1dy
n

0 0.2 0.4 0.6 0.8 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

f = 0 f = 0.06 f = 0.12
f = 0.18

f = 0.24

f = 0.3

f = 0.36

κ/κmax

c 2dy
n

Nonlinear dynamic scheme: parametric plot of the dynamic coefficients cdyn
n as function of the wave component j=jmax and the blending factor f for

eft n ¼ 1, right n ¼ 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f = 0

f = 0.13

f = 0.21

κ/κ
max

κ′
/κ

m
ax

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f = 0

f = 0.13

f = 0.22

κ/κ
max

κ′
2 /κ

m
ax

2

Nonlinear dynamic scheme (k ¼ 2): modified wavenumber for du=dx (left) and d2u=dx2 (right). (j) spectral; (�) 2nd-order central; (M) 4th-order
; (O) 6th-order central; (.) 8th-order central; (/) 10th-order central; (r) 6th-order tridiagonal padé; (3) nonlinear dynamic scheme.



0.2 0.2

0
2

0.3 0.3

0.
3

0.
4

0.4

0.4

0.4

0.
5

0.
5

0.5
0.5

0.
6

0.
6

0.6
0.6

0.
7

0.7

0.7

0.
8

0.8

0.8

0.
9

0.90.9

κ1

κ 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0.1

0.
1

0.2 0.2

0.
2

0.3 0.3

0.
3

0.
4

0.
4

0.4
0.4

0.
5

0.
5

0.5
0.5

0.
6

0.
6

0.6

0.
7

0.7
0.7

0.
8

0.80.8

0.9
0.9

0.9

κ1

κ
2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Dual-wave analysis: transfer functions of the 6th-order tridiagonal Padé scheme (left) and the nonlinear dynamic scheme with f ¼ 1=5 (right).

D. Fauconnier et al. / Journal of Computational Physics 228 (2009) 1830–1861 1839
containing M wave components with uniformly distributed magnitude. The analytic expression of the nth-derivative is then
defined as
onu
oxn
ðj; xÞ ¼

XM

j¼1

ðijÞneðijjxÞ: ð35Þ
The different wave components of the field will interact with each other in the evaluation of the nonlinear scheme. Since
now we can no longer use the modified wave number to asses the performance, we define a transfer function at random
position x ¼ xi, defined as
GðjÞ ¼

dn�u
dxn
ðj; xiÞ

���� ����
onu
oxn
ðj; xiÞ

���� ���� ; ð36Þ
which goes from unity to zero. We investigate the transfer function GðjÞ for the case n ¼ 1 and k ¼ 2. Since in this case the
modified wavenumber of the nonlinear dynamic scheme collapses with that of the Padé scheme when the blending factor is
f ¼ 1=5, we adopt this value in the evaluation of cdyn

k;n . In this way comparison between the standard 6th-order tridiagonal
Padé scheme and the nonlinear scheme makes the influence of nonlinear interactions clearly visible. Results are shown in
Fig. 5 for a dual-wave field (M ¼ 2). The general performance is in good agreement with that of the Padé scheme. However,
a weak influence of the nonlinear interactions slightly affects the accuracy in the high-wavenumber region were jj > 2=3.
Since most finite difference methods cannot represent accurately the scales for which jj > 2=3, this region is typically of lit-
tle interest. In the current context of large-eddy simulation, these modes are eliminated through the explicit dealiasing filter
in real computations. Apparently the impact of the nonlinear interactions seems to be quite limited, but further evaluation
for a spectrum of waves is necessary and will be done in the numerical study.

5. Calibration of the blending factor

5.1. Procedure

In 1993, Tam and Webb [7] introduced explicit low-dispersive prefactored finite difference schemes or dispersion-rela-
tion preserving (DRP) schemes in the field of computational aeroacoustics, where qualitative simulation of propagating
waves require such highly non-dispersive and non-dissipative schemes. They are constructed by an a priori least squares
minimization of the dispersion error, represented by the difference between the real wavenumber and the modified wave-
number, in the wavenumber range j ¼ 0! p=2D. Kim and Lee [8] extended this idea to implicit compact Padé schemes.
Hixon [9], Ashcroft et al. [10] and Bogey and Bailly [11] also constructed similar schemes.

As mentioned before, the linear dynamic finite difference approximations behaves in a way like the dispersion-relation
preserving finite difference schemes. However, in contrast to these prefactored schemes with fixed Fourier characteristics,
the linear dynamic scheme optimizes its coefficient according to the spectral content of the flow, resulting in adaptive Fourier
characteristics. This way the scheme varies between the asymptotic ðkþ 2Þnd-order and an optimized kth-order finite
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difference approximation, depending on the spectral content on the grid and the choice of the blending factor f. The latter
accentuates the sensitivity of the dynamic scheme to the spectral content of the field. Similarly, the nonlinear dynamic finite
difference scheme can be seen as an explicit formulation of an dispersion-relation preserving Padé scheme. Here, the choice
of f (which is the only degree of freedom in the dynamic schemes) determines the importance of every distinct wave compo-
nent in the field.

In the current section, a natural approach is proposed for determining the optimal value of the blending factor f. The idea
is to minimize the kinetic energy associated to the resulting finite difference error. This way, the energy spectrum of the flow
is taken into account as a natural weighting function. Although the method is similar to the traditional methods used by e.g.
Tam and Webb [7] or Kim and Lee [8], the weighting function in the current method has a clear meaning rather than being an
ad-hoc function.

We define the spectral error between the exact nth derivative and its finite difference approximation as
bEðjÞ ¼ in jn � j0ðj; f Þn
� �

Dnû; ð37Þ
and we define the error spectrum as
EbE ðjÞ ¼ bE bE � ¼ jn � j0ðj; f Þn
� �2

D2nEðjÞ; ð38Þ
where EðjÞ represents the generic energy spectrum of the field uðxÞ given by the product ûû�. The optimal value for the
blending factor f can be calculated by finding the minimum of the integral over all wave components, i.e. by solving
o

of

Z p
D

0
jn � j0ðj; f Þn
� �2

EuðjÞWðjÞdj ¼ 0: ð39Þ
If necessary an additional weighting function WðjÞ can be selected to make the integrand analytically integrable [8], other-
wise it should be set to unity. In the following paragraphs, the integral in (39) is solved numerically with WðjÞ ¼ 1 by assum-
ing two spectrum shapes. First, a uniform spectrum shape is adopted. Indeed, the uniform spectrum is most often implicitly
assumed for the construction of the dispersion-relation preserving schemes, e.g. [7], and will also be used for the derivation
of such schemes in this work. Moreover, the influence of the assumption of the standard uniform spectrum in comparison
with other spectra will be demonstrated. Since eventually the dynamic finite difference schemes will be applied to Burgers’
turbulence in Section 7, the energy spectra that correspond with this flows is used in order to retrieve the optimal blending
factor in the dynamic finite difference approximations. The Burgers’ spectrum will be termed hereafter generic since it may
be considered representative for a wide range of Burgers’ turbulent flows, characterized by a j�2 spectrum.

5.2. Uniform spectrum

When adopting the uniform spectrum (29) for EðjÞ, the integrals can be calculated analytically, leading to an expression
for the optimal blending factor as function of the highest appearing wavenumber jc , thus fopt ¼ f ðjcÞ. The values of fopt ob-
tained for the 1st and 2nd derivative for the different schemes are given in Fig. 6. Remark that the optimal value of f depends
on the wavenumber range one wants to optimize for, which is indicated by jc. It is seen that for jc ! 0, the optimal blending
factors tend to the value 1/5. It was found earlier that for f ¼ 1=5 the modified wavenumber of the nonlinear dynamic
scheme collapses with that of the standard 6th-order Padé scheme. Apparently this behavior is inherited by the linear dy-
namic schemes. Since very high dispersive errors exist in the range 2=3jmax < jc < jmax, it is preferable that this wave num-
ber range is omitted in the optimization. Minimizing the errors in this range would be inefficient, leading to a poor overall
accuracy. Moreover, in a consistent simulation, all modes in this region should be filtered out in order to prevent aliasing
errors. Therefore, fopt is not displayed for this high-wavenumber range.

5.3. Generic Burgers’ spectrum

The adopted uniform spectrum shape makes analytical integration possible. However, the obtained optimal values for
fopt ¼ f ðjc < 2=3jmaxÞare most likely suboptimal for general turbulent flows. Indeed, Kolmogorov turbulence as well as Burgers’
turbulence are characterized by an energy spectrum that has an inertial range j�a with slope�a < 0. It is possible to construct
an analytical prescription as the one proposed by Pope [22] for such turbulent spectra. However, the energy containing range
cannot be captured easily in a universal expression as it is dominated by the large scale flow characteristics of the specific geom-
etry. The shape of the dissipation range is more universal, but must be expressed as function of the viscous wavenumber jg.

Although such a spectrum prescription could theoretically be constructed, we consider it more feasible in this work to
directly use the developing energy spectrum obtained from the stored solution of a direct numerical simulation at multiple
time steps. In this section we consider the DNS-solution of a 1D viscous Burgers’ equation with initial velocity field
uðxÞ ¼ sinðxÞ. Further details of this simulation will be given in Section 6.1. The initial sine wave evolves into a shock when
advanced in time, and the spectrum develops from one single wavenumber mode to a full spectrum of modes displaying an
inertial range j�a with slope a ¼ 2. As motivated in the introduction, optimized schemes are not that interesting in the case
of, e.g. well resolved direct numerical simulations, since the smallest resolved wavenumbers contain only little energy. In
order to obtain a spectrum that is more suitable for optimizing the blending factor in the dynamic schemes a priori, we filter
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the stored DNS-solutions with a sharp Fourier filter to a certain cutoff wavenumber jc that lies within the inertial range for a
fully developed shock spectrum. After injecting the filtered DNS-solution to a discrete grid with resolution jmax, the spectrum
corresponds to an ideal LES-spectrum, for which optimized schemes are relevant. We choose jc ¼ 2=3jmax. Fig. 7 shows a
parametric plot of the time evolution of the normalized energy spectrum.

Assume the analytical function Euðj; tÞ / j�a, which describes a general inertial range spectrum with slope �a. A dimen-
sionless effective wavenumber ratio can then be defined as,
Fig. 7.
jeðtÞ
jmax

¼ 1
j3

max

Z jmax

0
3j2þa Euðj; tÞ

Euðj; tÞk k dj

 �1=2

; ð40Þ
where the norm of the energy spectrum is defined as
Euðj; tÞk k ¼ 1
jmax

Z jmax

0
jaEuðj; tÞdj: ð41Þ
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This ad hoc definition, which can easily be obtained from a numerical simulation, is expected to provide a good indication
about the shape of the instantaneous energy spectrum. Indeed, in case of the uniform spectrum, i.e. a ¼ 0, the effective wave-
number ratio reduces to
Fig. 8.
dynam
jeðtÞ
jmax

¼ 1
j3

max

Z jc

0
3j2 jmax

jc
dj


 �1=2

¼ jc

jmax
: ð42Þ
It is emphasized that, unless the spectrum is uniform, the effective wavenumber je does not represent exactly the highest
wavenumber jc in the solution. Nevertheless, it provides an indication of the instantaneous spectral content of the solution
on the computational grid. This is illustrated for the Burgers’ equation in Fig. 7. Numerical evaluation of the integral expres-
sion (39), for each individual spectrum shape, results into an optimal value fopt for the blending factor f. Calculating the effec-
tive wavenumber je, that corresponds to each intermediate spectrum, allows to represent the optimal blending factors as a
function of je. fopt ¼ f ðjeÞ is displayed in Fig. 8. For the limit je ! 0, the optimal blending factor fopt tends to the same asymp-
totic value fopt ¼ 1=5 as for the uniform spectrum. Due to the creation of new wavenumber modes on the computational grid,
the energy spectrum expands, and a corresponding increase of the blending factor is observed. As soon as the highest Fourier
modes on the computational grid are energized, i.e. at t � 0:7 or je=jmax � 0:05, the filtered spectrum switches from DNS-
resolution to LES-resolution and fopt increases significantly. Moreover, a maximum is observed for the linear dynamic
schemes in the region 0:1 6 je=jmax 6 0:3. Once the filtered inertial range spectrum becomes fully established, i.e. at
je=jmax P 0:6, the optimal blending factor of the linear dynamic schemes reaches a final value foptðmaxðjeÞÞ. We will use
this value for the practical computations. Indeed, since the fully developed inertial range spectrum is characteristic for a
wide range of Burgers’ flows, independent of their specific flow pattern, the corresponding foptðmaxðjeÞÞ can also be consid-
ered optimal for a wide range of such flows.

5.4. Dynamic vs. dispersion-relation preserving finite difference approximations

In both the dispersion-relation preserving schemes of e.g. Tam and Webb [7] and Kim and Lee [8], and the dynamic finite
difference schemes presented in this work, a predefined parameter must be determined by using a least squares minimiza-
tion over a certain wavenumber range characterized by a cutoff wavenumber jc .

In case of the dynamic finite difference schemes the optimal blending factor fopt , solely determines a certain quasi-optimal
trajectory of the dynamic coefficient cdyn

k;n as function of an a priori assumed generic shape of the fully developed inertial range
spectrum as illustrated in Fig. 7. Hence, the role of fopt is restricted to the calibration of the dynamic finite difference approx-
imation for a flow at infinite Reynolds number, such that a minimal dispersion error is obtained for the fully developed iner-
tial range spectrum. Since this predefined energy spectrum is assumed characteristic for a wide range of fully developed
turbulent flows, the corresponding optimal blending factors fopt are expected to be generally applicable to various numerical
simulations. Once fopt is defined, the dynamic finite difference scheme will optimize itself in real-time through the dynamic
coefficient cdyn

k;n such that a minimal dispersion error is obtained according to the instantaneous energy spectrum of the flow.
It is emphasized that this instantaneous energy spectrum may differ from the generic spectrum, used for retrieving fopt . This
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Table 1
Uniform spectrum (jc ¼ 2=3jmax).

Linear Nonlinear

k ¼ 2 k ¼ 4 k ¼ 2

f1;opt 0.2403148409 0.2242833402 0.2125572156
cdyn

1 �0.334363121 0.0775493930
f2;opt 0.2314394545 0.2215576290 0.2244367639
cdyn

2 �0.134556615 0.0206187300

Table 2
Burgers’ spectrum (je ¼ maxðjeÞ).

Linear Nonlinear

k ¼ 2 k ¼ 4 k ¼ 2

f1;opt 0.2615500000 0.232000000 0.212800000
cdyn

1 �0.301919628 0.073238344
f2;opt 0.2349700000 0.224720000 0.224300000
cdyn

2 �0.130154404 0.020254997
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implies that the dynamic scheme has variable Fourier characteristics which depend on the real-time value of cdyn
k;n . As a con-

sequence, if the flow is well resolved, the dynamic schemes will return to the standard Taylor-based finite difference
schemes, regardless the value fopt .

In the dispersion-relation preserving (DRP) finite difference schemes, the optimal parameter is the constant coefficient ck;n

itself and has to be determined by a similar least squares minimization as that used in the dynamic schemes. As a conse-
quence, these schemes are prefactored and have predefined Fourier characteristics which are optimized for an a priori as-
sumed shape of the energy spectrum. Typically, a uniform spectrum shape with jc ¼ 2=3jmax is adopted for the
determination of ck;n in the DRP schemes. It may be obvious that the value of ck;n used in the DRP schemes must be identical
to that of the dynamic coefficient cdyn

k;n in case of a uniform spectrum, such that ck;n jc ¼ 2=3jmaxð Þ ¼ cdyn
k;n fopt;jc ¼ 2=3jmax
� �

.
The self-adaptivity of the dynamic scheme to the shape of the energy spectrum, could be advantageous in practical sim-

ulations where the position of the LES filter-cutoff is generally not known a priori. The LES-cutoff could lie in the inertial
range as well as in the dissipation range corresponding to an LES or a quasi-DNS, respectively. Similar problems appear when
simulating transitional flows, which display a developing spectrum and thus evolve from DNS-resolution to LES-resolution.
The DRP schemes are thus suboptimal in situations that differ from those for which they are designed, as they cannot adapt
to the instantaneous flow characteristics. Moreover, if the grid resolution of the LES is increased while keeping the filter
width constant, DRP schemes should ideally be re-optimized to the new ratio jc=jmax. The dynamic schemes, both linear
and nonlinear, have the advantage over the DRP schemes that they automatically adapt to the changing flow conditions.

In Tables 1 and 2, the values of the optimal blending factors, that are applied in further numerical simulations, are given.
Moreover, the (linear) dynamic coefficient that corresponds with this fopt is shown, for a certain value of the effective wave-
number or cutoff wavenumber. Notice that for the nonlinear scheme it is meaningless to define a certain value of cdyn

k;n , as it is
a fluctuating field which determines a different cdyn

k;n for each wave component. Values of fopt and the corresponding cdyn
k;n for

the uniform spectrum with jc ¼ 2=3jmax are given in Table 1, whereas Table 2 gives fopt and the corresponding cdyn
k;n for the

Burgers spectrum at je ¼maxðjeÞ. As mentioned before, the above optimal values for the blending factor are used for the
dynamic finite difference approximations in the numerical simulations hereafter. For the dispersion-relation preserving
schemes the coefficients ck;n obtained with the uniform spectrum (Table 1) are used in further simulations, since they closely
correspond to the original schemes of e.g. Tam and Webb [7], Kim and Lee [8] and many other authors.

The modified wavenumbers of the 2nd-order and 4th-order DRP schemes, used in the computations hereafter, collapse
with that of the 2nd-order and 4th-order dynamic schemes for respectively fopt ¼ 0:24 fopt ¼ 0:22, obtained with the uniform
spectrum at jc ¼ 2=3jmax. These modified wavenumbers were already presented in the theoretical analysis in Fig. 2.

6. Numerical setup

For a first evaluation of the developed schemes for large-eddy simulation, it may be more useful to consider a simpler
problem than LES of three-dimensional Navier–Stokes turbulence. Following the work of Love [23] and Das and Moser
[24], we select the one-dimensional viscous Burgers’ equation. Similar to the Navier–Stokes equations, Burgers’ equation
contains a quadratic nonlinear term which is responsible for the generation of small scale structures. These small scales
are eventually dissipated by a viscous force. Moreover, the energy spectrum of the viscous Burgers’ equation is characterized
by an inertial range, through which energy is transferred from the large scales to the small scales until it is dissipated by the
viscosity in the dissipation range. Since this process is similar to that of the Navier–Stokes equations, Burgers [25] proposed
his equation as a simplified model for turbulence. Despite the agreements, the small scale dynamics of Burgers’ turbulence
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and real turbulence are substantially different. In Burgers’ turbulence, the small scales represent shock waves, with thickness
in the order of the viscous scale. Instead of a successive breakdown of the large vortex structures into smaller ones as in real
turbulence, the small structures tend to merge into large ones. The corresponding inertial range scaling for a shock wave
spectrum is found to be j�2. Nevertheless, since in Burgers’ model turbulence the large and small scales are separated in
Fourier space by a characteristic inertial range j�2 and are thus statistically independent, it is considered as a very useful
tool, not only for investigating the influence of the subgrid modeling, but also for assessing the quality of the proposed dy-
namic finite difference approximations in an large-eddy simulation environment.

The viscous Burgers’ equation in non-dimensional form is given by
ou
ot
þ 1

2
ou2

ox
¼ 1

Re
o2u
ox2 ; ð43Þ
subjected to the periodic boundary conditions in the domain 0 6 x 6 2p
uðx; tÞ ¼ uðxþ 2p; tÞ: ð44Þ
The initial condition
uðx; 0Þ ¼ sinðxÞ ð45Þ
is imposed at t ¼ 0, representing a single Fouriermode. The Reynolds number is set to Re ¼ 1=m ¼ 500. The initial kinetic en-
ergy and dissipation rate can be calculated as
kðt ¼ 0Þ ¼
Z jg

0
Eðj; t ¼ 0Þdj ¼ 1

2p

Z 2p

0

1
2

u x; t ¼ 0ð Þ½ �2 dx ¼ 1
4
; ð46Þ

eðt ¼ 0Þ ¼ 2m
Z jg

0
j�2Eðj; t ¼ 0Þdj ¼ m

p

Z 2p

0

ou
ox
ðx; t ¼ 0Þ


 �2

dx ¼ 1
Re
: ð47Þ
For t > 0, the single wave evolves in time and finally runs into a stationary shock at x ¼ p, which is damped by viscous forces.
Therefore, the test case be seen from a numerical point of view as the 1D equivalent of the Taylor–Green transitional flow. As
mentioned before, the corresponding shock wave energy spectrum exhibits an inertial range j�2, through which energy is
transferred from the large scales to the small scales, and finally dissipated by viscous effects.

6.1. Direct numerical simulation of the Burgers’ equation

First, a reference solution for the Burgers’ system is generated from a direct numerical simulation. A uniform grid is
adopted with nx ¼ 8192 nodes, for which the grid cutoff-wavenumber jmax ¼ p=DDNS ¼ 4096, such that all scales in the dis-
sipation range, including the viscous scale jg ¼ pe1=4=m3=4 are well resolved at all times (see Fig. 9). Indeed, the viscous wave-
number reaches a maximum of jg � 355 at maximum dissipation, which is far below the grid cutoff-wavenumber jmax. The
simulation is done using a pseudo-spectral code, avoiding numerical discretization errors. Dealiasing is not required, since
the viscous scale is fully resolved, and consequently no aliasing error can appear. The nonlinear term is discretized in the
energy conserving skew-symmetric form.

The standard 4-stage Runge–Kutta time-stepping with coefficients ½1=4;1=3;1=2;1� is adopted. The time step is set to
Dt ¼ 1:10�5 such that CFL number CFL 6 Dt maxðuÞ=DDNS 6 1:3 � 10�2 and the Neumann number Neu ¼
2mDt=D2

DNS � 6:8 � 10�2. The decaying shock wave is followed until t ¼ 10. Simulation results of uðx; t ¼ tjÞ and the corre-
sponding spectrum are illustrated in Fig. 9.
Fig. 9. Burgers’ equation. Velocity field uðx; tÞ (left). Energy spectrum Eðj; tÞ (right).
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6.2. Large-eddy simulation of the Burgers’ equation

The goal of LES is to reproduce the dynamics of the filtered DNS-solution, by resolving only the high energetic large scale
features (low wavenumbers) in the flow, corresponding to ideally 80% of the total kinetic energy [22], while neglecting the
low energetic small scales (high-wavenumbers). This requires the definition of an appropriate spatial filter. In this work, a
sharp spectral Fourier filter is used. Although there are ongoing discussions favoring smooth filters over the sharp cutoff filter
and vice versa [26–28], here we prefer the sharp Fourier filter to obtain a clear scale separation in wavenumber space, elim-
inating modes above the cutoff but leaving modes below the cutoff unharmed. This is in contrast with smooth filters where
small scales are only damped, but not eliminated. Thus, from a mathematical point of view, only the sharp Fourier filter guar-
antees no aliasing after discretization. Moreover, subgrid and supergrid issues are clearly separated, and no subfilter scales
have to be modeled. Inevitably, when using sharp Fourier filters, the Gibbs-phenomenon arises, due to the truncation of an
infinite Fourier series. Although elimination of the wiggles is subject to shock capturing schemes (TVD, MUSCL, ENO), they
are part of the filtered solution in the context of LES [24]. Note also that the current testcase is quite different from the test-
cases generally used in the development of DRP schemes, where either linear wave propagation problems are studied
[8,10,18], or the simulation of the inviscid nonlinear Burgers’ equation, without dealiasing nor subgrid dissipation [9].

Applying a sharp Fourier filter with cutoff jc ¼ p=Df to the continuous Eq. (43), denoting ~: as the filtered quantity, gives
oeu
ot
þ 1

2
ogeueu
ox
¼ 1

Re
o2eu
ox2 �

1
2

os
ox
; ð48Þ
in which the subgrid stress is defined as
s ¼ fuu � f~u~u: ð49Þ
The nonlinear term is explicitly filtered in order to avoid aliasing [4,29]. Now the equation can be discretized from contin-
uum space R to the discrete space with grid resolution jmax ¼ p=D, leading to
d~u
dt
þ 1

3

g
~u

d~u
dx
þ 1

3
df~u~u
dx
¼ 1

Re
d2~u
dx2 �

1
2

ds
dx
: ð50Þ
Following the work of De Stefano and Vasilyev [26], the nonlinear term is discretized in the skew-symmetric formulation in
order to guarantee the discrete conservation of kinetic energy. This is recommended for large-eddy simulation, and is con-
sidered more important than the a priori conservation of momentum. Following the work of Orszag [4] we adopt
jc ¼ 2=3jmax. Since Eqs. (48) and (50) are unclosed, an appropriate subgrid-scale model is needed to close the equations.
Two models are considered in this work: the perfect subgrid-scale model and a dynamic Smagorinsky model. In case of the per-
fect subgrid-scale model, the exact subgrid-stresses are extracted at each Runge–Kutta step from a simultaneous running
DNS-simulation. This results in a perfect LES in which the filtered DNS results are recovered exactly in case of exact num-
erics. For the dynamic Smagorinsky model we follow the work of Love [23] defining the dealiased subgrid-scale closure as
s ¼ �2
g
mt

d~u
dx
; ð51Þ
in which the turbulent viscosity
mt ¼ C2D2
f

d~u
dx

���� ����� 
w

: ð52Þ
h:iw denotes the average over a length w. The filter width is chosen Df ¼ D. In the limit w! D, (52) tends to the one-dimen-
sional equivalent of the Smagorinsky model, while w! L tends to the direct-interaction subgrid model investigated by Leslie
and Quarini [30]. Here, we choose w ¼ L because it was found to lead to better results. Since the subgrid dissipation should
only start when the nonlinear terms begin to produce wavenumbers not visible on the LES grid, Germano’s dynamic proce-
dure [31] is used to calculate the appropriate value of C2. Appendix D explains in more detail Germano’s dynamic procedure
applied to the Burgers’ equation.

The large-eddy simulation of the Burgers’ equation is done on a uniform mesh with nx ¼ 256 nodes, for which the grid
resolution is jmax ¼ p=D ¼ 128 and the physical resolution is defined by the filter jc ¼ 2=3jmax ¼ 85. Different central finite
difference discretizations are investigated, among which the dispersion-relation preserving schemes and the dynamic low-
dispersive schemes. For the latter family of schemes, some particularities arise. Since ~u and ~u~u have strongly different energy
spectra, the dynamic coefficients cdyn

k;n are different in the linear dynamic finite difference approximations of the advective and
convective contributions in (48). Hence, skew-symmetry and the conservation of kinetic energy are lost. In order to preserve
skew-symmetry the same dynamic coefficient cdyn

k;n should be used in both contributions. It would theoretically be possible to
include both the convective and advective operator in the expressions (13) and (14), resulting in
L ¼ c�k;nð2
k � 1ÞDk

g
~u

dkþn~u
dxkþn

�����
D

þ dkþnf~u~u
dxkþn

�����
D

8<:
9=;; ð53Þ
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M ¼ ð1� 2kÞDk
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dxkþn
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D

þ dkþnf~u~u
dxkþn
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D
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9=;� 2kDkfc��k;nð1� 22ÞD2
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dxkþnþ2

�����
D
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�����
D
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9=;; ð54Þ
and leading to a single dynamic coefficient for the skew-symmetric operator. Instead an alternative method is used, in which
the dynamic coefficient cdyn

k;n obtained for d~u=dx is used in the evaluation of df~u~u=dx. We prefer the latter method in this work,
since it is equivalent to the discretization of the skew-symmetric operator using traditional standard schemes or prefactored
optimized schemes. In case of the perfect subgrid-scale model the same dynamic coefficient cdyn

k;n is used for the discretization
of the subgrid force ds=dx as for the skew-symmetric operator. However, since the subgrid force of the eddy-viscosity model is
discretized analogously to the molecular viscous term, the dynamic coefficient cdyn

k;n of the 2nd derivative is used. For the non-
linear dynamic scheme, cdyn

k;n depends theoretically neither on ~u or ~u~u, as it is an explicit approximation of the dispersion-rela-
tion preserving Padé scheme. Therefore, the advective and convective contributions are calculated straightforwardly using
the conservative formulation of the nonlinear dynamic scheme (Appendix B). Finally, because higher wavenumber modes
are generated by the nonlinear finite difference approximations, every Runge–Kutta step the updated velocity field uðxÞ is
filtered with the dealiasing filter instead of only to the nonlinear term in equation (48).

7. Numerical results

After defining an appropriate error evaluation, a priori tests are done on a filtered DNS-solution. The numerical errors on
the solution of a large-eddy simulation of Burgers’ equation are investigated as well as their interactions with the modeling
errors.

7.1. Quantification of numerical errors

To quantify numerical errors due to finite difference approximations, we use the error decomposition as defined by
Vreman et al. [19] and Meyers et al. [20], which tries to separate modeling errors from numerical errors. Consider a reference
DNS containing the viscous scale jg, and a specific flow variable of interest /. The total error in / for a large-eddy simulation
with grid resolution jmax ¼ p=D and filter resolution jc ¼ p=Df is then defined as
e/;total jc;jmaxð Þ ¼ g/s jg;3=2jg
� �

� ~/fd jc;jmaxð Þ: ð55Þ
The error is explicitly defined as function of the LES filter resolution and grid resolution where g/sðjg;3=2jgÞ represents the
filtered spectral DNS-solution, while ~/fdðjc;jmaxÞ represents the finite difference LES-solution with cutoff jc on an LES grid
with maximum wavenumber jmax. The total error consists of contributions of numerical errors and modeling errors and
is decomposed as
e/;model jc;jmaxð Þ ¼ g/s jg;3=2jg
� �

� ~/s jc;jmaxð Þ; ð56Þ
e/;num jc;jmaxð Þ ¼ ~/s jc;jmaxð Þ � ~/fd jc;jmaxð Þ: ð57Þ
~/sðjc;jmaxÞ represents the spectral LES-solution with cutoff jc and numerical resolution jmax corresponding to an LES grid,
and would be equivalent with ~/fdðjc;j1Þ which is the finite difference LES-solution on an infinitely fine grid. The modeling
error, e/;model is related to the adopted subgrid closure, while the numerical error e/;num contains aliasing errors as well as dis-
cretization errors. In case of proper dealiasing through explicit filtering, e/;num reduces exactly to the finite difference discret-
ization errors. Although e/;num is well defined for a perfect subgrid model or a static Smagorinsky model in which the value of
the theoretical constant C2 is chosen a priori, the errors are not clearly separated in case of a dynamic model where the value
of model coefficient C2 is affected by the numerics. In the latter case numerical errors and modeling errors continuously
interfere through the feedback of the numerically obtained dynamic model constant C2. In this work, we attempt to show
the influence of the numerics on the calculation of the dynamic model coefficient.

Since the value of the model coefficient C2 is considered to be a theoretical model parameter that corresponds to the
instantaneous energy spectrum of the resolved velocity field, also the dynamic procedure by which it is determined, might
be considered as a separate post-processing procedure at each time step. Hence, in this work, we attempt to separate the
discretization of the LES-equations and that of the dynamic procedure. Then, three coefficients can be distinguished. First
the coefficient Cs;s denotes the theoretical value that is obtained by applying the dynamic procedure, in which the derivatives
are evaluated spectrally, to the solution of the pseudo-spectral large-eddy simulation of Burgers’ equation. Further the coef-
ficient Cs;fd is defined, which represents the theoretical value that is obtained by applying the dynamic procedure, in which
the derivatives are also evaluated spectrally, to the solution of the finite difference large-eddy simulation of Burgers’ equa-
tion. Although Cs;fd is affected by the finite difference errors in the LES-solution due to the discretization of the basic LES
equation, its calculation is not liable to finite difference errors. Hence, this allows to isolate more or less the influence of
the numerical errors in the Burgers’ solution on the model coefficient. Finally, Cfd;fd denotes the finite difference approxima-
tion of the theoretical value Cs;fd. This coefficient is obtained in a finite difference large-eddy simulation of Burgers’ equation
in which the derivatives within dynamic procedure are also evaluated with the same finite difference method. In summary,
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both coefficients Cs;fd and Cfd;fd contain influences of the discretization of the LES-equations, however Cs;fd does not suffer from
discretizations in its calculation, in contrast to Cfd;fd. The influence of both coefficients will be shown in the next paragraph.

The decomposed errors, i.e. the modeling error and the numerical error, can now be evaluated in two different ways lead-
ing to mathematics-based and physics-based error definitions. Following the work of Chow and Moin [3], we first select the
velocity field uðxÞ (or its derivative in case of a priori studies) as the variable of interest /. The corresponding energy spec-
trum and the global magnitude of the pointwise errors eu are then calculated as
Table 3
Overvie
respect

Symbols
�
M

O

.

/

�

E/ðjÞ ¼ceuðjÞceu
�ð�jÞ; / ¼ eu; ð58Þ

k/ ¼
Z jmax

0
EeuðjÞdj; / ¼ eu: ð59Þ
Remark that the magnitude k/; eu corresponds to the L2-norm, often used in error evaluation, by the relation L2 ¼ 2p
ffiffiffiffiffi
k/

p
, and

this error always has a positive sign. We call this type of error definition the mathematics-based error.
The alternative is to select the weighted energy spectrum of the field jpEuðjÞ as the variable of interest /. For low values

of p the large scale errors are dominant, while small scale errors are accentuated, for increasing p. The corresponding error
definition leads to the error between the energy spectra eE, the total error on the kinetic energy ek if p ¼ 0 and the total error
on the dissipation ee if p ¼ 2
eEðjÞ ¼ DEuðjÞ; ð60Þ

ek ¼ Dk ¼
Z jmax

0
DEuðjÞdj; ð61Þ

ee ¼ De ¼
Z jmax

0
j2DEuðjÞdj: ð62Þ
This alternative method, used, e.g. in the work of Meyers et al. [20], Park and Mahesh [5] and Berland et al. [6], differs from
the previous method in the sense that the errors are evaluated in a physics-based manner instead of a mathematics-based
manner. Park and Mahesh [5] defined the instantaneous error on the energy spectrum as a static error analysis whereas they
termed the time-dependent global errors on the kinetic energy or dissipation as a dynamic error analysis. Remark further that
the sign of ek and ee could be either positive or negative, enabling to see interactions between different errors. The physics-
based error definitions represent only errors on the amplitude of the solution, assumed that the influence of phase is not
accumulated in time. Instead, the mathematics-based error contains contributions of both amplitude and phase errors of
the solution at a certain time. Meyers et al. [32] found that some physics-based error definitions may lead to an overly opti-
mistic accuracy, which is confirmed by our numerical results. Hence, mathematics-based error definitions are more strict as
they contain information about phase and amplitude. These error definitions are used for analyzing the performance of finite
difference schemes, and interactions with the subgrid model.

7.2. A priori results

Table 3 gives an overview of the performed simulations, and the corresponding symbol notation used in the plots to fol-
low. First, the performance of the linear (k ¼ 2;4) and nonlinear (k ¼ 2) dynamic schemes is investigated in an a priori way.
The dynamic finite difference approximations of the first derivative du=dx are calculated from the filtered DNS-solution at
every time step, and their performance is compared to the standard central schemes and the dispersion-relation preserving
schemes (DRP) of Tam and Webb [7]. The error is thus edudx ¼ ou=ox� du=dx. Only the mathematics-based error definition
using the energy spectrum of the error E/ðj; tÞ;/ ¼ edudx and the global kinetic energy of the error k/;/ ¼ edudx are considered
in this a priori study. As mentioned before, the latter is related to the L2-norm by L2 ¼ 2p

ffiffiffiffiffi
k/

p
. Fig. 10 presents k/ as function

of time. At the early stages of the simulation, when the spectrum is still developing and the small scales contain little or no
energy, the linear dynamic schemes with k ¼ 2;4 almost collapse with the asymptotic 4th-, respectively, 6th-order standard
central schemes. This is in contrast to the equivalent 2nd- and 4th-order DRP schemes which reach only 2nd-, respectively,
4th-order accuracy. When the flow evolves, the linear dynamic schemes adapt according to the developing energy spectrum.
Once the shock is formed resulting in an inertial range spectrum, the linear dynamic schemes act like the DRP schemes and
w of the different simulations. Note that the 2nd- and 4th-order DRP schemes and the 4th-order tridiagonal DRP Padé are equivalent with both linear,
ively nonlinear dynamic schemes with fixed constant coefficients ck;n calculated in Table 1.

– simulations
2nd-order central � 2nd-order DRP
4th-order central N 4th-order DRP
6th-order central j 4th-order tridiagonal DRP Padé
8th-order central 3 Linear dynamic scheme with k ¼ 2
10th-order central ––– Linear dynamic scheme with k ¼ 4
6th-order tridiagonal Padé – �– � Nonlinear dynamic scheme with k ¼ 2
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Fig. 10. A priori results: magnitude of the error on the 1st derivative k/;/ ¼ edudx before shock formation at 0 6 t 6 1:2 (left) and after shock formation and
during the decay at 1 6 t 6 10 (right). (Symbols see Table 3.)
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obtain high accuracy. The linear dynamic scheme with k ¼ 2 obtains a better accuracy than the standard 6th-order schemes,
while the accuracy of the dynamic scheme with k ¼ 4 reaches that of the 10th-order central scheme. For the decaying shock
wave, which is accompanied by a shrinkage of the energy spectrum, the linear dynamic schemes tend toward their initial
behavior with formal order of accuracy. These findings are confirmed by Fig. 11 which displays a snapshot of the energy
spectrum E/ðj; tÞ;/ ¼ edudx at times t ¼ 0:5 (before shock formation), and t ¼ 1:8 (after shock formation) near maximum dis-
sipation. Hence, the energy spectra of the velocity field Eu differ significantly at both time steps. At t ¼ 0:5 the linear dynamic
schemes reduce almost to the asymptotic 4th-, respectively, 6th-order schemes. Clearly, they are optimized for the lower
wavenumber modes which contain most of the energy. This is in contrast to the equivalent DRP schemes which are cali-
brated for a full spectrum and therefore reach only 2nd-, respectively, 4th-order accuracy. At t ¼ 1:8 the spectrum is fully
developed and the linear dynamic schemes have adapted accordingly. The same accuracy as the 2nd-, respectively, 4th-order
scheme is obtained for the low wavenumber region, while the error on the high-wavenumber modes is significantly reduced
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compared to the traditional central schemes. As expected, similar performance for the DRP schemes is observed here. To
illustrate the adaptivity of the linear dynamic scheme, Fig. 12 gives the ratio of the dynamic coefficient to its Taylor value
cdyn

k;n =c�k;n as function of time. Clearly there is a sharp increase of this ratio around t � 1 where the shock is forming and
the simulation shifts from DNS-resolution to LES-resolution. The results of the nonlinear scheme with k ¼ 2 display a more
inconsistent and irregular behavior. Although the nonlinear scheme is expected to obtain similar performance as the 4th-or-
der tridiagonal DRP Padé scheme, its accuracy is only comparable at early times in the simulation. Once the spectrum is fully
developed, the quality of the nonlinear scheme seems to be lost partially since it cannot meet the accuracy of the 4th-order
tridiagonal Padé scheme. This suggests that the performance is neutralized due to nonlinear pollution in the scheme. Indeed,
looking at the snapshots in Fig. 11 it can be observed that although at t ¼ 0:5 the accuracy of the lower wavenumber modes
lies between that of the 4th- and 6th- order central scheme, the error does not fade out for the higher wavenumber range as
for the linear schemes. This clearly shows that the nonlinear dynamic scheme produces spurious scales with low energy, due
to the nonlinear interactions in the scheme. These scales are distributed over the entire wavenumber range and affect the
quality of every mode. At t ¼ 1:8, the accuracy decreases to that of the 2nd-order scheme for the small wavenumber region,
while spurious energy is created again in the entire wavenumber range even beyond the filter-cutoff. Although the nonlinear
scheme seems to have better performance than its linear variant, it never reaches the accuracy of the 4th-order DRP Padé
scheme. These findings suggests that the nonlinearity may impose an obstruction in order to safely apply this scheme for
LES. This is further discussed in the a posteriori studies.

7.3. A posteriori results

7.3.1. Perfect subgrid-scale model
The results obtained from the large-eddy simulation of the Burgers’ equation using the perfect subgrid-scale model are

expected to be similar to those of the a priori study, since the LES-solution should approximately return the filtered DNS-
solution. Hence, modeling errors are almost absent, and verification of this indeed shows a maximum modeling error on
the kinetic energy of Dku;model � 1 � 10�7. Numerical errors are thus dominant for these simulations. However, in contrast
to the a priori study, the finite difference discretization can now affect the solution as it evolves in time.

Fig. 13 shows the global magnitude of the numerical error as function of time. This error corresponds to the L2-norm
which is a mathematics-based error quantity, reflecting the error contributions on both amplitude and phase of the solution.
The results look very similar to those of the a priori study. In the early stages of the simulation, the accuracy of the linear
dynamic schemes with k ¼ 2 and k ¼ 4 again closely approach that of the standard 2nd-, respectively, 4th-order schemes,
while the corresponding DRP schemes are less accurate. Once the shock is fully developed (1 6 t 6 3) the linear dynamic
schemes and the corresponding DRP schemes display similar behavior. The linear dynamic scheme with k ¼ 2 and the
2nd-order DRP scheme both obtain better accuracy than the 6th-order central scheme, while the 4th-order DRP scheme
and the linear dynamic scheme with k ¼ 4 even outperform the 6th-order Padé scheme. As the shock wave decays further
e.g. at times t P 3, it can be seen that the DRP schemes lose their accuracy much faster than the linear dynamic schemes, and
their errors become rapidly larger than those of the linear dynamic schemes. This again emphasizes the benefit of the adap-
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Fig. 12. A priori results: ratio of the dynamic coefficient cdyn
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tive behavior of the dynamic schemes obtaining minimal errors according to the spectral properties of the flow field. For
t !1 the dynamic schemes should reduce again to their asymptotic equivalents. Fig. 14 displays two snapshots of the en-
ergy spectrum of the numerical error E/ðj; tÞ;/ ¼ eu at times t ¼ 0:5 and t ¼ 1:8, which reflect the adaptable Fourier char-
acteristics of the linear dynamic schemes. The numerical error on the energy spectrum eE ¼ DEuðj; tÞ gives qualitatively
similar results and is therefore not shown.

Looking at the performance of the nonlinear scheme (k ¼ 2) results are much worse than in the a priori study. The accu-
racy remains generally around that of the 4th-order scheme although for the very early stages of the simulation (t 6 0:04) it
decreases to the level of the 4th-order DRP Padé scheme. It is obvious from Fig. 14 that the nonlinear interactions of the
scheme severely pollute the solution e.g. at t ¼ 1:8. Apparently, even the largest scales are significantly affected by the
nonlinearity.

We proceed now by discussing the physics-based errors from Fig. 15 showing the numerical errors on the kinetic energy
and dissipation rate. These physics-based errors mainly reflect differences in amplitude of the solution. The observations and
conclusions from Fig. 13 mainly apply to the results of Fig. 15. Both linear dynamic schemes (k ¼ 2;4) perform very well as
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Fig. 14. Perfect SGS model: snapshots of the energy spectrum E/ðj; tÞ of the error / ¼ eu at times t ¼ 0:5 (developing spectrum) (left) and t ¼ 1:8 (fully
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they converge to the asymptotic standard schemes for smooth velocity fields with low spectral content at the beginning of
the simulations, while they adapt toward DRP-behavior when the shock is formed and a full inertial range of scales is pres-
ent. Remarkably, the linear dynamic schemes with k ¼ 2;4 obtain much better accuracy in comparison to the equivalent
2nd- and 4th-order DRP schemes. This can be understood from the optimization procedure in Section 5.3, where the Burgers’
spectrum is used to obtain the optimal value of the blending factor fopt , instead of the uniform spectrum. On the other hand,
the nonlinear scheme with k ¼ 2 again leads to very poor accuracy improvement, as consequence of the nonlinear pollution.

Summarizing, the results of the linear dynamic schemes agree very well with the performance expected from the
theoretical analysis. The encouraging results seem to support the hypothesis that such dynamically optimized schemes
may provide an advantageous tool for numerically accurate large-eddy simulations. Further we have seen that nonlinear
schemes are not appropriate for the purpose of accurate flow simulations, since spurious wavenumber modes are produced
due to nonlinear interactions in the scheme. These spurious scales strongly affect the solution.

7.3.2. Dynamic Smagorinsky model
Finally, we investigate the performance of the dynamic schemes in the large-eddy simulation of the Burgers’ equation

using a dynamic Smagorinsky model. In contrast to the perfect subgrid-scale model, now significant modeling errors arise,
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which interact with the numerical errors and vice versa, making the results somehow unpredictable. Therefore, we try to
visualize these interactions by separating modeling errors and numerical errors. The exact modeling error on the kinetic en-
ergy and the dissipation rate are shown in Fig. 16. The positive modeling error, indicates that the dynamic Smagorinsky
model is slightly too dissipative, since the kinetic energy of the spectral LES is smaller than the DNS. It was further verified
from the detailed results that the subgrid model is especially too dissipative for the large and medium scales, whereas an
energy pile-up occurs near the filter cutoff. The pile-up is due to the inability of the eddy viscosity model to describe well
the cusped behavior of the spectral viscosity at the sharp cutoff. Nevertheless, the general performance of the dynamic Sma-
gorinsky model appears satisfactory since the j�2 inertial range is approximated fairly good. Fig. 16 shows also the dynamic
model coefficient C2

s;s of the pseudo-spectral LES together with the turbulent viscosity. As expected, the dynamic procedure
engages the model at t � 1 and automatically finds the quasi-optimal value as the shock decays. Note that the value of the
dynamic coefficient is higher for Burgers’ turbulence than for Kolmogorov turbulence, due to the essential differences in the
dynamics of the small scales.

In Figs. 17 and 18 the mathematics-based errors are presented. Fig. 17 gives a measure for the L2-norm as function of
time, whereas Fig. 18 displays the energy spectrum of the numerical errors at t ¼ 0:5 and t ¼ 1:8. Generally the same con-
clusion can be drawn for the linear dynamic schemes with k ¼ 2;4 and the corresponding DRP schemes, as in case of the
perfect subgrid scale model. The linear dynamic schemes obtain asymptotic accuracy for the early stages, in contrast to
the DRP schemes, and they adapt to the flow physics as the simulation proceeds, leading to equivalent accuracy as the
DRP schemes which is much better than that of the standard central schemes. The linear dynamic scheme with k ¼ 2 reaches
accuracy better then the 8th-order central scheme, while the linear dynamic scheme with k ¼ 4 reaches almost the quality of
the 6th-order standard Padé scheme. Although the nonlinear dynamic scheme with k ¼ 2 still produces spurious small scales
which inevitable interact with all scales of motion, it performs surprisingly better in combination with the dynamic Smago-
rinsky model instead of the perfect subgrid-scale model. Albeit the reasons for this behavior remain somewhat unclear, we
assume that the creation of spurious scales compensates the over-dissipative nature of the Smagorinsky model, resulting in a
better overall behavior. Despite this unforeseen advantage, application of the nonlinear scheme remains questionable for
LES.

Fig. 19 shows the physics-based errors on the velocity field, i.e the absolute value of the error on the kinetic energy and on
the dissipation rate. Results are analogous to the ones previously discussed, displaying the very good behavior of the linear
dynamic schemes, and the unexpected good behavior of the nonlinear scheme. Nevertheless, some remarkable results are
obtained. Looking at the error on the kinetic energy ek in Fig. 19, especially the linear dynamic scheme with k ¼ 2 performs
very well as it reaches almost the quality of the 6th-order standard Padé scheme. However, this is not observed for the error
on the dissipation rate in Fig. 19 where the linear dynamic scheme with k ¼ 2 reaches approximately 8th-order accuracy. The
error on the dissipation rate focusses more on the accuracy of the small scales than does the error on the kinetic energy. This
emphasizes the importance of looking at different error measures, since they indicate different phenomena, confirming the
studies in [32,5].

We proceed our investigation of numerical errors by examining the influence of the numerics on the dynamic procedure
itself. Fig. 20 gives the relative error-percentages between the model coefficients Cs;fd of the finite difference simulations and
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the Cs;s of the pseudo-spectral simulation, and the deviation between Cs;fd and Cfd;fd of the finite difference simulations. These
relative errors are defined by
DC2
s ¼

C2
s;s � C2

s;fd

C2
s;s

; ð63Þ

DC2
fd ¼

C2
s;fd � C2

fd;fd

C2
s;fd

: ð64Þ
First, the model coefficient Cs;fd is systematically larger for low order schemes than for high-order schemes compared to its
theoretical value Cs;s. This may be explained by the fact that the dynamic procedure tries to compensate for the reduced effec-
tiveness of the subgrid dissipation on the smallest resolved scales when using low order schemes. Hence, the dynamic Ger-
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mano procedure responds to numerical shortcomings of the low-order finite difference scheme by increasing the coefficient.
This results into a larger subgrid dissipation on the small scales, which are strongly affected by the numerical errors, but
unfortunately also on the large scales, which are much less affected by the numerics. This closely connects to the results
of Meyers et al. [33]. Secondly, the influence of discretization errors on the gradients used in the Germano procedure, results
in a systematical underestimation of the dynamic model coefficient Cfd;fd in comparison with Cs;fd. However, despite the fact
that the 2nd-order central scheme has the most severe underestimation of Cfd;fd compared to Cs;fd at the time that the model
coefficient is the largest, it tends to overestimate Cfd;fd toward the end of the simulation. This effect seems to disappear for
higher-order schemes, and one may conclude that increase of Cs;fd compared to Cs;s, due to numerical errors in the basic equa-
tions, is partially compensated by the decrease of Cfd;fd in comparison with Cs;fd, due to the numerical errors in the dynamic
procedure itself. Finally, it was verified that the coefficient Cfd;fd is smaller than Cs;s, which means that the total subgrid dis-
sipation is reduced, resulting in higher levels of kinetic energy in the LES-simulation. This appears to be advantageous, since
the Smagorinsky model is seen to be too dissipative in the mean. In conclusion, the dynamic procedure tries to find an opti-
mum between dissipation on the large scales and that on the small scales. Verification of the energy spectra learns that for
the dynamic Smagorinsky model, the dissipation on the large scales is too high, whereas that on the small scales is too low,
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leading to a pile-up near the cutoff. It may be obvious that a hyper-viscosity model combined with a dynamic procedure
would probably lead to less dissipation on the large scales and better dissipation on the small scales.

It may be clear by now that numerics and modeling are completely entwined in large-eddy simulations, especially when
using more advanced subgrid models such as the dynamic model. In the previous discussion the influence of the interactions
between numerics and modeling on the level of the model constant was shown. Although this gave more insight in how the
dynamic Smagorinsky model acts, it does not indicate whether a better approximation of the model will lead to a better
overall performance. Therefore, we further compare the finite difference LES-solutions with those of the filtered DNS. Com-
parison of the results with the filtered DNS, implies that the total error eu;total, which includes numerical and modeling errors,
is taken into account, whereas comparison with the spectral LES results, implies that only the numerical error eu;num is taken
into account. Fig. 21 gives the error between the energy spectra at t ¼ 1:8 of the finite difference LES-solutions on the one
hand, and the filtered DNS-solution or the pseudo-spectral LES-solution on the other hand.
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In accordance with the results of the perfect subgrid-scale model, the full numerical discretization error decreases with
increasing accuracy of the numerical schemes. However, almost the opposite is observed when looking at the total error, i.e.
the difference between the filtered DNS-solution and the finite difference LES-solution. There, the 2nd-order finite difference
LES leads to the lowest errors on the largest scales, whereas the higher-order methods appear to perform better on the small-
est resolved scales. It was verified from the results, that eventually the 4th-order finite difference solution leads to the lowest
errors on the kinetic energy, whereas the more accurate schemes lead to the lowest errors on the dissipation rate. This proves
that partial cancellation between the numerical errors and modeling errors can occur as shown by Meyers et al. [20], but that
it strongly depends on the error measure used in the error evaluation.

8. Computational cost and robustness

Although the results are excellent, the current implementation of the method requires the calculation of approximately
three dynamic coefficients, leading inevitably to a significant computational overhead. It was found for the large-eddy sim-
ulation of the Burgers’ equation, that the total computational time was about 20% higher for the dynamic schemes compared
to the DRP schemes, which may be considered prohibitive for practical computations. Nevertheless, this premature conclu-
sion must be placed in perspective. In the current work, the dynamic finite difference schemes were implemented straight-
forwardly and rigorously. This implies that each of the three dynamic coefficients was calculated at each Runge–Kutta stage,
that is four times per time step. However, it might be sufficient to calculate each dynamic coefficient only once per time step,
or even once per few time steps, depending on the time increment Dt. Indeed, since the time scale ratio h ¼ Dt=sg must be
chosen sufficiently small in order to avoid numerical dissipation, one cannot expect the physics to change much during one
time step. Hence, evaluating the coefficients each h timesteps might be sufficient. This strategy is illustrated hereafter.

Consider the variable hs, which indicates the required CPU-time per Runge–Kutta step for a large-eddy simulation, using a
finite difference method with static predefined stencil coefficients. Similarly consider the variable hd, which indicates the re-
quired CPU-time per Runge–Kutta step for a large-eddy simulation using a finite difference method with dynamic, real-time
calculated stencil coefficients. Then, Dh ¼ hd � hs gives the computational overhead for the calculation of the dynamic coef-
ficients per Runge–Kutta step. Further, assume a q-stage Runge–Kutta method for the time-integration of the large-eddy
simulation over Nt time steps. The computational CPU-time per Runge–Kutta step hd can now be expressed as function of
hs, i.e.
Fig. 22
hd ¼ hs þ Dh
q0

q
N0t
Nt
; ð65Þ
where the ratio q0=q determines the number of evaluations per q stages and N0t=Nt determines the total number of evalua-
tions per Nt time steps. Fig. 22 illustrates the reduction of the computational overhead for the large-eddy simulation of Bur-
gers’ equation in the current work, where q ¼ 4 and Nt ¼ 1 � 10�6.

For example, if all dynamic coefficients are evaluated only once every time step, i.e. q0=q ¼ 1=4 and N0t=Nt ¼ 1, the com-
putational overhead is only 5%, which is a substantial reduction compared to the original 20%. If all dynamic coefficients are
only evaluated every h ¼ 10 time steps (q0=q ¼ 1=4 and N0t=Nt ¼ 1=10), the overhead is only 0.5%, which is negligible. Obvi-
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ously, such strategies make the dynamic schemes relatively cheap compared to its quality, which makes them competitive
with the dispersion-relation preserving schemes. Such strategies will be investigated in more detail in future work.

Finally, we comment about the robustness of the developed dynamic finite difference schemes in the present work. As
mentioned before, The coefficient of the nonlinear dynamic schemes was restricted according to the theoretical extrema
of expression (32), in order to avoid accidental singularities. On the other hand, the linear dynamic schemes are sufficiently
robust since no clippings on the constant dynamic coefficients were needed in this work in order to guarantee the stability.
However, a particularity arises if the velocity field is constant, i.e. if j=jmax 	 0. Indeed, according to relations (18) and (28),
the dynamic coefficient is indefinite, i.e. cdyn

k;n ¼ 0=0, in such cases. This particularity can easily be excluded, by enforcing
cdyn

k;n ¼ 0 and is justified since any finite difference scheme returns the exact value for the derivative of a constant field.

9. Conclusions and future work

In this work, a family of dynamic finite difference schemes were presented as a tool for accurate large-eddy simulation.
More specifically, two linear and one nonlinear variant were discussed. The emphasis of these schemes is on optimal repre-
sentation of Fourier modes within the wavenumber range j 2 ½0;2p=3D�, rather than obtaining asymptotic accuracy for the
lowest wavenumber modes. Although the constructed dynamic schemes share similarities with the dispersion-relation pre-
serving schemes of Tam and Webb [7], their behavior is more refined. The presented schemes are dynamically adapted dur-
ing the simulation through a dynamic coefficient cdyn

k;n which is calculated from the flow field. Hence, the corresponding
Fourier characteristics vary in time according to the flow physics such that the global dispersion error is minimized. This
is in contrast to prefactored dispersion-relation preserving schemes, which have predefined Fourier characteristics. Only
the sensitivity of the schemes to high-wavenumber modes in the generic turbulent spectrum is set a priori by an additional
parameter, which is considered generally applicable for a wide range of turbulent flows. The dynamic behavior, and the
resulting high numerical quality has been extensively investigated both analytically and numerically by large-eddy simula-
tion of Burgers’ equation with different subgrid models. Several specific conclusions can be drawn for both the linear dy-
namic scheme and the nonlinear dynamic scheme.

(i) For velocity fields that are well resolved on the computational grid such that they show a smooth behavior on the grid
scale e.g. in laminar flows or in case of DNS-resolution, the linear dynamic schemes tend toward the corresponding
asymptotic high-order standard central schemes, focusing on maximum accuracy for the largest scales. This is an
advantage over the DRP schemes which remain suboptimal for those flows, since they are designed a priori assuming
a uniform spectrum in the region j 2 ½0;2p=3D�.

(ii) During transitional stages, when the highest wavenumber modes of the developing energy spectrum gain in energy,
the linear dynamic schemes seamlessly optimize themselves according to the changing spectral content. The sensitiv-
ity with which the scheme adapts to high-wavenumber modes in the energy spectrum is predefined by the blending
factor f.

(iii) Once the flow is fully developed, exhibiting full inertial range behavior, the linear dynamic scheme acts like a DRP
scheme, minimizing the dispersion errors for all scales in the wavenumber range j 2 ½0;2p=3D�.

(iv) The nonlinear dynamic scheme, which contains a pointwise varying dynamic coefficient, should exhibit similar perfor-
mance as the tridiagonal DRP Padé scheme according to analytical analysis. However, due to nonlinearity, spurious scales
are produced in the rangej 2 ½0;p=D�, severely polluting the solution and substantially reducing accuracy of the Burgers’
solution. Therefore, the nonlinear dynamic scheme may not be appropriate for large-eddy simulations of realistic turbu-
lent flows, as it produces spurious energy. This conclusion may be extrapolated toward all nonlinear schemes.

(v) The schemes have been tested in an a priori and an a posteriori study of LES of the viscous Burgers’ equation, in which
a sine wave develops toward a shock wave. Moreover, two subgrid models are applied: the perfect subgrid model and
the dynamic Smagorinsky model. The results showed a significant increase in numerical accuracy, confirming the
large potential of this methodology. Although the dynamic schemes involve an additional cost due to the calculation
of the dynamic coefficient at each iteration, it was argued that it may sufficient to determine these coefficients only
every few time steps. Such a strategy, would lead to a negligible computational overhead.

(vi) Finally, despite the large numerical accuracy improvement of the high-order schemes, it was shown that low-order
methods may have advantageous cancellation between numerical errors and modeling errors resulting in a reduction
of the total errors on some quantities. However, the opposite was observed for quantities that accentuate the small
scales. Although it is tempting to resign to application of lower-order discretizations in combination with dissipative
models, trusting upon contingent cancellation of errors, we advocate to develop better models in combination with
highly accurate discretizations such that both numerical errors and modeling errors are controlled more
systematically.

Although we illustrated the performance of the developed dynamic finite difference schemes only for large-eddy simu-
lation of Burgers’ turbulence in this work, we already successfully applied these schemes to the large-eddy simulation of
three-dimensional transitional Taylor–Green vortex flow. The results of this study will be reported in future work together
with the general construction of dynamic compact Padé schemes.
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Appendix A. Dynamic finite difference approximations

A.1. Order of accuracy k ¼ 2

A.1.1. First derivative (n ¼ 1)
The basic expression for the dynamic finite difference approximation of the first derivative in a node �uðxiÞ ¼ �ui is given

by
ou
ox
ðxÞ ¼ d�u

dx
þ cdyn

1 D2 d3�u
dx3 ; ðA:1Þ
in which cdyn
1 is calculated with expression (18). From Taylor expansion we obtain the values c�1 ¼ �1=6 and c��1 ¼ �1=4, while

the finite difference approximations of the derivatives are given by
d�u
dx
¼ �

�ui�1 þ �uiþ1

2D
; ðA:2Þ

d3�u
dx3 ¼

��ui�2 þ 2�ui�1 � 2�uiþ1 þ �uiþ2

2D3 ; ðA:3Þ

d5�u
dx5 ¼

��ui�3 þ 4�ui�2 � 5�ui�1 þ 5�uiþ1 � 4�uiþ2 þ �uiþ3

2D5 : ðA:4Þ
A.1.2. Second derivative (n ¼ 2)
The basic expression for the dynamic finite difference approximation of the second derivative in a node �uðxiÞ ¼ �ui is given

by
o2u
ox2ðxÞ ¼

d2�u
dx2 þ cdyn

2 D2 d4�u
dx4 ; ðA:5Þ
in which cdyn
2 is calculated with expression (18). From Taylor expansion we obtain the values c�1 ¼ �1=12 and c��2 ¼ �1=6,

while the finite difference approximations of the derivatives are given by
d2�u
dx2 ¼

�ui�1 � 2�ui þ �uiþ1

D2 ; ðA:6Þ

d4�u
dx4 ¼

�ui�2 � 4�ui�1 þ 6�ui � 4�uiþ1 þ �uiþ2

D4 ; ðA:7Þ

d6�u
dx6 ¼

�ui�3 � 6�ui�2 þ 15�ui�1 � 20�ui þ 15�uiþ1 � 6�uiþ2 þ �uiþ3

D6 : ðA:8Þ
A.2. Order of accuracy k ¼ 4

A.2.1. First derivative (n ¼ 1)
The basic expression for the dynamic finite difference approximation of the first derivative in a node �uðxiÞ ¼ �ui is given

by
ou
ox
ðxÞ ¼ d�u

dx
þ cdyn

1 D4 d5�u
dx5 ; ðA:9Þ
in which cdyn
1 is calculated with expression (18). From Taylor expansion we obtain the values c�1 ¼ 1=30 and c��1 ¼ �1=3, while

the finite difference approximations of the derivatives are given by
d�u
dx
¼

�ui�2 � 8�ui�1 þ 8�uiþ1 � �uiþ2

12D
; ðA:10Þ

d5�u
dx5 ¼

��ui�3 þ 4�ui�2 � 5�ui�1 þ 5�uiþ1 � 4�uiþ2 þ �uiþ3

2D5 ; ðA:11Þ

d7�u
dx7 ¼

��ui�4 þ 6�ui�3 � 14�ui�2 þ 14�ui�1 � 14�uiþ1 þ 14�uiþ2 � 6�uiþ3 þ �uiþ4

2D7 : ðA:12Þ
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A.2.2. Second derivative (n ¼ 2)
The basic expression for the dynamic finite difference approximation of the second derivative in a node �uðxiÞ ¼ �ui is given by
o2u
ox2ðxÞ ¼

d2�u
dx2 þ cdyn

2 D4 d6�u
dx6 ; ðA:13Þ
in which cdyn
2 is calculated with expression (18). From Taylor expansion we obtain the values c�1 ¼ 1=90 and c��2 ¼ �1=4, while

the finite difference approximations of the derivatives are given by
d2�u
dx2 ¼

��ui�2 þ 16�ui�1 � 30�ui þ 16�uiþ1 � �uiþ2

12D2 ; ðA:14Þ

d6�u
dx6 ¼

�ui�3 � 6�ui�2 þ 15�ui�1 � 20�ui þ 15�uiþ1 � 6�uiþ2 þ �uiþ3

D6 ; ðA:15Þ

d8�u
dx8 ¼

�ui�4 � 8�ui�3 þ 28�ui�2 � 56�ui�1 þ 70�ui � 56�uiþ1 þ 28�uiþ2 � 8�uiþ3 þ �uiþ4

D8 : ðA:16Þ
Appendix B. Conservative formulation

All linear finite difference schemes, including the linear dynamic scheme, are a priori conservative since they can be
rewritten as the discrete divergence of a certain (higher-order) approximation of the velocity field. This approximation is
then defined in finite difference context as
onu
oxn
ðxÞ ¼ dn�uapprox

dxn
¼ dn

dxn
�uþ ck;nD

kd
ku

dxk
þOðDkþ2Þ

 !
; ðB:1Þ
in which the central discrete derivate dn=dxn should have the minimal stencil width corresponding with the 2nd-order cen-
tral approximation. �uapprox is the higher-order reconstruction of the velocity field by Taylor series expansion. For the linear
schemes, the divergence and non-divergence formulations are equal on a discrete level. However, it can be understood that
the nonlinear scheme is not written in an a priori conservative formulation because the dynamic coefficient is pointwise
varying. This can be remedied by taking the divergence of a low-dispersive dynamic reconstruction definition. Consider
the general definition
�uapproxðxÞ ¼ �uþ ck;nD
kd

ku
dxk
þOðDkÞ: ðB:2Þ
Following the same procedure as in Section 3, we can extract the nonlinear dynamic coefficient from this definition and
obtain
cdyn
k;n ¼ �

L

M
¼

c�k;n

1� 2kð1� 22Þ
1� 2k

D2fc��k;n

dkþ2�u
dxkþ2

�����
D

dk�u
dxk

�����
D

: ðB:3Þ
Taking the divergence of this dynamic reconstruction series gives the conservative formulation of the nonlinear dynamic
scheme. The constants c�k;n and c��k;n remain those of the non-conservative formulation. This way the modified wavenumbers
of the conservative and non-conservative formulation are identical, and thus the expected accuracy should be preserved. Re-
mark that calculation of the dynamic coefficient from the conservative formulation is advantageous, since the derivatives
have more compact stencil widths, leading to less computational cost.

Appendix C. Modified wavenumbers

The modified wavenumbers for kth-order standard finite difference approximations of the 1st derivative are
j01ðk ¼ 2Þ ¼ sinðjDÞ
D

; ðC:1Þ

j01ðk ¼ 4Þ ¼ � sinð2jDÞ � 8 sinðjDÞ
6D

; ðC:2Þ

j01ðk ¼ 6Þ ¼ �� sinð3jDÞ þ 9 sinð2jDÞ � 45 sinðjDÞ
30D

; ðC:3Þ

j01ðk ¼ 8Þ ¼ �3 sinð4jDÞ � 32 sinð3jDÞ þ 168 sinð2jDÞ � 672 sinðjDÞ
420D

; ðC:4Þ

j01ðk ¼ 10Þ ¼ ��2 sinð5jDÞ þ 25 sinð4jDÞ � 150 sinð3jDÞ þ 600 sinð2jDÞ � 2100 sinðjDÞ
1260D

: ðC:5Þ
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The modified wavenumbers for kth-order standard finite difference approximations of the 1st derivative are
j022 ðk ¼ 2Þ ¼ 2� 2 cosðjDÞ
D2 ; ðC:6Þ

j022 ðk ¼ 4Þ ¼ cosð2jDÞ � 16 cosðjDÞ þ 15
6D2 ðC:7Þ

j022 ðk ¼ 6Þ ¼ �2 cosð3jDÞ þ 27 cosð2jDÞ � 270 cosðjDÞ þ 245
90D2 ; ðC:8Þ

j022 ðk ¼ 8Þ ¼ 9 cosð4jDÞ � 128 cosð3jDÞ þ 1008 cosð2jDÞ � 8064 cosðjDÞ þ 7175
2520D2 ; ðC:9Þ

j022 ðk ¼ 10Þ ¼ �8 cosð5jDÞ þ 125 cosð4jDÞ � 1000 cosð3jDÞ þ 6000 cosð2jDÞ � 42000 cosðjDÞ þ 36883
12600D2 : ðC:10Þ
The modified wavenumbers of higher derivatives for the 2nd-order standard finite difference approximation are
j033 ¼
� sinð2jDÞ þ 2 sinðjDÞ

D3 ; ðC:11Þ

j044 ¼ �2
4 cosðjDÞ � cosð2jDÞ � 3

D4 ; ðC:12Þ

j055 ¼
sinð3jDÞ � 4 sinð2jDÞ þ 5 sinðjDÞ

D5 ; ðC:13Þ

j066 ¼ 2
� cosð3jDÞ � 15 cosðjDÞ þ 6 cosð2jDÞ þ 10

D6 ; ðC:14Þ

j077 ¼ �
sinð4jDÞ þ 14 sinð2jDÞ � 14 sinðjDÞ � 6 sinð3jDÞ

D7 ; ðC:15Þ

j088 ¼ �2
�28 cosð2jDÞ þ 8 cosð3jDÞ þ 56 cosðjDÞ � cosð4jDÞ � 35

D8 : ðC:16Þ
Appendix D. Germano’s dynamic procedure for Burgers’ equation

Here, we briefly revisit the dynamic procedure [31] applied to Burgers’ equation. This dynamic procedure, allows to deter-
mine the model coefficient by comparing the resolved stress and the closure term on two different filter resolutions
jc ¼ 2p=3D and jc;2 ¼ 2p=3aD, where a ¼ 2 is typically chosen. With �̂ denoting the coarse filter, the multilevel formulation
of the closure terms is then
fuu ¼ f~u~u � 2C2D2
gd~u

dx

���� ����� 
w

d~u
dx
; ðD:1Þ

cuu ¼ ĉuû � 2C2ðaDÞ2
ddû

dx

���� ����� 
w

dû
dx
: ðD:2Þ
Remark that we use the projective property of the sharp spectral filter b~: ¼ :̂. The model coefficient C2 can be extracted by
comparing both equations on the same coarse resolution level, minimizing the error between both, leading to a least squares
approximation for C2
C2 ¼ LMh i
MMh i ; ðD:3Þ
where
L ¼ c~u~u � ĉuû; ðD:4Þ

M ¼ 2D2
f

dd~u
dx

���� ����� 
w

d~u
dx
� a2

ddû
dx

���� ����� 
w

dû
dx

" #
: ðD:5Þ
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